14,16-Bridged 16-Crown-5. Drastic Enhancement in Cation-Binding Ability 1)

Yoshihisa INOUE,* Kazuhito WADA,* Mikio OUCHI,* Akira TAI, and Tadao HAKUSHI*

Basic Research Laboratory, Himeji Institute of Technology,

2167 Shosha, Himeji, Hyogo 671-22

*Department of Applied Chemistry, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyoqo 671-22

14,16-Bridged 16-crown-5 derivatives possess unusually high cation-binding abilities for most cations, maintaining the original relative cation-selectivity for Na⁺ and Ag⁺, for which the fixed conformation is responsible.

We have recently demonstrated that the 16-crown-5 derivatives, though formally less-symmetrical, possess much higher relative cation-selectivity for Na⁺ and Ag⁺ than common 15-crown-5.²⁾ This specificity has been attributed to the slight ring-expansion induced by the extra methylene introduced, which affords such cavity size and donor orientation that are more suitable for complexing size-matched cations. In the work on the 16-crown-5 lariats,^{2c},e) it has been shown that the simple alkylation(s) of the parent 16-crown-5 (1) at 15-position lead to substantial, global decrease in the cation-binding abilities for all cations examined. This phenomenon appears to be general, since similar tendency has also been reported with 15-crown-5.³⁾ In the present communication, we report unusual enhancement of cation-binding ability upon bridging substitution of 16-crown-5, which is in sharp contrast to the substantially decreased binding ability of simply methylated 16-crown-5 at the same positions.

The vinylene-bridged 16-crown-5 (3) was synthesized in 31% by the reaction of cis-2-cyclopentene-1,4-diol 4) with tetraethylene glycol ditosylate in the presence of sodium hydroxide in tetrahydrofuran. Catalytic hydrogenation of 3 over Pd/C gave 14,16-ethylene-16-crown-5 (4) in 80% yield. For comparison purpose, 1:1

1006 Chemistry Letters, 1988

Table	1.	Solvent	extraction	of	aqueous	metal	picrates	with	some	substituted
16-cro	wn-5	and 17-0	crown-5 der							

Ligand	% Extractability ^{b)}												
	Na ⁺	К+	Rb ⁺	Cs+	Ag+	Tl+	Mg ² +	Ca ²⁺	Sr ²⁺	Ba ² +			
1	13.5	3.0	2.1	0.9	35.7	18.1	0.3	0.8	5.7	15.4			
2 ^{c)}	5.1	1.4	1.0	0.5	23.4	14.4	0.3	0.3	3.6	8.2			
3	13.1	7.6	6.8	6.2	55.3	34.6	0.6	0.8	2.0	14.2			
4	41.0	14.5	12.7	6.2	65.0	45.0	1.1	2.0	9.0	28.0			
5	1.8	1.9	0.9	0.7	13.8	7.8	0.7	0.7	0.9	2.1			
6	0.9	1.3	1.0	1.0	12.2	9.8	d)	d)	d)	d)			

a) Temperature 25.0 \pm 0.1 °C; aqueous phase (10 cm³), [picrate] = 0.003 mol dm⁻³; organic phase (CH₂Cl₂, 10 cm³), [ligand] = 0.003 mol dm⁻³. b) Defined as percent picrate extracted into the organic phase; average of two or three independent runs: error <0.7. c) A 1:1 mixture. d) Not determined.

* A 1:1 mixture of cis- and trans-isomers.

mixture of cis- and trans-14,16-dimethyl-16-crown-5 (2), 17-crown-5 (5), and cis-17-crown-5-15-ene (6) were prepared in 45, 11, and 7% yields by analogous procedures from 2,4-pentanediol, 1,4-butanediol, and cis-2-butene-1,4-diol, respectively.⁵⁾

The cation-binding abilities of the 16- and 17-crown-5 derivatives (1-6) were evaluated by the conventional solvent extraction experiments under our standardized conditions.²⁾ Aqueous solutions of alkali, alkaline earth, and some heavy metal picrates $(0.003 \text{ mol dm}^{-3})$ were extracted with dichloromethane

solutions of the respective crown ether (0.003 mol dm^{-3}) at 25 $^{\circ}C$.

As can be seen from Table 1, 14,16-dimethyl-16-crown-5 (2) gave much lower extractabilities for all cations examined than those for the parent 16-crown-5 (1); similar effect has been observed in the case of 15-substituted 16-crown-5 derivatives. The effect may be ascribed to the conformational change induced by the methylation. The introduction of two methyl groups at 14- and 16-positions of 1 increases steric repulsion through 1,3-diaxial interaction, especially when the methyl is located at the axial-position. The resulting conformation would not be suitable for complexation owing to the less-favorable orientation and/or arrangement of the donor oxygen atoms.

By contrast vinylene-bridged 16-crown-5 (3) shows marked recovery in extractabilities for most cations, which are comparable to or even greater than those for the parent 16-crown-5 (1). This may be attributed to the reduced steric interaction of the substituents at 14-/16-positions and/or the conformational fixing by bridging substitution. The facile extraction of soft Ag⁺ and Tl⁺ would suggest possible interaction with π electrons of the double bond.

The introduction of an ethylene bridge to 16-crown-5 enormously enhances the binding ability of 4 for all cations. Indeed, 4 exhibited the highest extractabilities for the size-matched Na⁺ and Ag⁺, among the crown ether derivatives ever examined by us, which include common 3m-crown-m (m=4-12), some of their benzo- and stilbeno-derivatives, and the 16-crown-5 lariats. 2,6) It is also important that, despite the drastic enhancement in extractability, the original preference of 4 for Na⁺ and Ag⁺ is not impaired. As the ligand 4 does not contain a double bond, the enhancement cannot be rationalized by the reduced steric hindrance or the π interaction, but it should be attributed to the partial freezing of the flexible 16-crown-5 skeleton by introducing a rigid cyclopentane or cyclopentene framework.

Inability of a double bond as an effective π -donor was further demonstrated by the extraction with the structurally related 17-crown-5-15-ene (6). Carrying a double bond at the corresponding position but lacking a conformation-fixing bridge, 6 merely shows extremely low extractabilities for all cations including Ag⁺ and Tl⁺, which are comparable with those for the saturated 17-crown-5 (5). 2d)

It may be concluded that the structural freezing by introducing a rigid framework into a flexible crown ether ring can be used as a tool for enhancing cation-binding ability without changing original cation-selectivity.

1008 Chemistry Letters, 1988

This work was supported in part by Grant-in-Aid for Scientific Research Nos. 61550645 and 62303006 from the Ministry of Education, Science, and Culture, which is gratefully acknowledged.

References

- 1) Molecular design of crown ethers. Part 5. For part 4, see Ref. 2e.
- 2) a) M. Ouchi, Y. Inoue, H. Sakamoto, A. Yamahira, M. Yoshinaga, and T. Hakushi, J. Org. Chem., 48, 3168 (1983); b) M. Ouchi, Y. Inoue, T. Kanzaki, and T. Hakushi, ibid., 49, 1408 (1984); c) M. Ouchi, Y. Inoue, K. Wada, and T. Hakushi, Chem. Lett., 1984, 1137; d) Y. Inoue, M. Ouchi, and T. Hakushi, Bull. Chem. Soc. Jpn., 58, 525 (1985); e) M. Ouchi, Y. Inoue, K. Wada, S. Iketani, T. Hakushi, and E. Weber, J. Org. Chem., 52, 2420 (1987).
- 3) G.W. Gokel, D.M. Dishong, and C.J. Diamond, J. Chem. Soc., Chem. Commun., 1980, 1053; Y. Nakatsuji, T. Nakamura, M. Okahara, D.M. Dishong, and G.W. Gokel, J. Org. Chem., 48, 1237 (1983).
- 4) C. Kaneko, A. Sugimoto, and S. Tanaka, Synth. Commun., 1974, 876.
- 5) Fractionally distilled samples of 1-6 gave satisfactory analytical and spectral data.
- 6) Y. Inoue, M. Ouchi, T. Nakazato, T. Matsuda, and T. Hakushi, Chem. Lett., 1982, 781; Y. Inoue, H. Harino, N. Koseki, and T. Hakushi, J. Org. Chem., 50, 5151 (1985); unpublished results.

(Received March 5, 1988)